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SECTION 1

INTRODUCTION AND SUMMARY

This report deals with the problems of steering a vehicle from a circular
orbit about one planet to a circular orbit about another planet using low
thrust acceleration. The mission is usually divided into three phases:
the planetary escape phase, the interplanetary transfer phase, and the
planetary capture phase.

During the escape phase, the vehicle spirals many times around the planet
until it reaches "escape," zero energy relative to the planet. It then
departs along an asymptote, which direction is dictated by the position of
the target planet. Very small thrust anomalies, on the order of one per-
cent, are sufficient to cause a sizable error in the direction of the
escape asymptote. The main guidance problem is to minimize this error.

During the interplanetary transfer phase the vehicle moves from the vicinity
of the departure planet to the vicinity of the target planet. This is a

two point boundary value problem to be satisfied by the appropriate thrust
steering program.

The capture phase commences when the capture condition, zero energy relative
to the target planet, is reached. For nominal conditions, the capture phase
is simply the reverse of the escape phase; that is, the vehicle spirals
toward the planet and approaches a circular orbit about the planet. The
problem during the capture phase is to steer the vehicle to the desired cir-
cular orbit starting with off-nominal conditions at capture.
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The interplanetary transfer phase is dealt with in Section 2, Previous
studies are divided along two lines:

(1) Those using aids such as the energy-momentum
diagram to patch rather simple steering pro-
grams to match the desired boundary conditions.

(2) Those using the indirect method of the calculus
of variations and an extensive computer program
to generate optimal steering programs.

The first approach was pursued by RODRIGQUEz (1] , LEVIN [2] , Fox [3] ,
and MOECKEL [4] but has been dropped by more recent investigators because
it does not directly provide optimal solutions.

Investigators using the second approach were led to consider steering pro-
grams which were progressively more simple and more realistic. This trend
is noted below. IRVING and BLUM [5] in 1959 and MELBOURNE [6] in 1960
treated both the thrust magnitude and direction as the control variables.
Next, MELBOURNE and SAUER [7] in 1962 and ZIMMERMAN, MACKAY, and ROSSA (8]
in 1963 used segments of constant thrust linked by a coast segment. The
thrust direction and the thrust durations were the control variables. 1In
1965, MELBOURNE and SAUER [9] determined optimal transfers for segments of
constant thrust at fixed angles relative to the radial direction linked by
a coast segment. The control variables were the two fixed steering angles
and the thrust durations, MELBOURNE and SAUER demonstrate that this last
steering program is only slightly less efficient than the more complicated
steering programs.

While the trend is to more simple steering programs, the methods of analysis
are no less complex. In Paragraph 2.5, it is shown that a complete picture
of the transfer problem can be formed using the energy-momentum diagram to
link segments of constant thrust acceleration at fixed steering angles with
a coast segment. This endeavor goes well beyond the point reached in
earlier studies [1-4] . Contours of constant characteristic velocity are
presented as functions of the target planet lead angle and flight time for
a matrix of steering angle combinations. The optimum steering combinations
and the corresponding characteristic velocity requirements are presented as
functions of flight time. The same results may be used to estimate the
payload penalties for reduced flight times or for increasing the width of
the launch window. Furthermore, simple analytic solutions to the powered
segments, which enable one to make all the calculations with the aid of
only a desk calculator, are presented.

The principal analytical methods for describing low thrust planetary escape
and capture spirals are evaluated in Section 3. 1In this report @ denotes
the ratio of the thrust acceleration to the gravity acceleration in either
the initial or final circular orbit. o is assumed to be a constant or zero




for any mission. For the escage and cazture phases using ion propulsion,
a typically ranges between 1074 and 10™%, ANTHONY [10] and others have
generated a perturbation solution in powers of a~l which accommodates a
variety of steering programs. Their method is valid to the point of

escape for @ > 0.2 and is of no particular use for smaller @& . JOHNSON

and STIMPF [11, 12] generated a second order perturbation solution in powers
of @ which they hoped would be valid to escape for very small & . It is
demonstrated that this method is completely unsuited for small@, and in
fact is valid to escape only for ® >0.2. For @ <10°2 the solutions break
down almost immediately. The asymptotic method employed by ZEE [13] and
LASS and LORREL [14] was evaluated last., It was found to be valid over
almost the entire trajectory, in fact up to the last revolution. During

the last revolution, the eccentricity rapidly increases and the method
breaks down. Attempts were made to combine the asymptotic and perturba-
tion methods. These attempts were unsuccessful. In summary, the problem
of obtaining an approximate analytic solution which is valid to the point
of escape for @ ¢10-2 remains unsolved.

The escape and capture phases are treated numerically in Section 4. The
escape problem, that of correcting the direction of the escape asymptote,
is discussed in Paragraph 4.1. It is too costly in time and payload to
correct the escape asymptote by thrust vector steering during the last
revolution about the target planet. BATTIN and MILLER {15] would vary the
thrust acceleration sometime shortly before the last revolution to make up
for predicted errors in the asymptote. This method, while theoretically
feasible, depends on the precise calculation of a very small corrective
thrust. The method, recommended in this report, is to turn the thrust off
for a short interval, sometime before the last revolution, when the orbit
eccentricity is still small, The coast duration is analytically related to
the asymptote orientation error.

The major portion of Section 4 deals with the problem of steering to a cir-
cular orbit starting from off-nominal conditions at capture. Unlike the
escape problem, this problem cannot be disposed by simply varying the thrust
level or by judiciously turning the thrust on and off. BATTIN and MILLER
solve this problem by steering to a pseudo-reference path. Their method
does not depend on an explicit solution to the trajectory.

An entirely different solution is developed in Paragraph 4.3; one which does
not depend on an explicit solution or any reference path. The steering
angle is controlled as a function of the instantaneous energy and velocity
heading angle. Convergence is achieved even for large errors in the radial
distance and the velocity heading angle at capture. Curves are presented
which allow one to estimate the characteristic velocity as a function of
the capture conditions using two different control gains.

While a feedback logic is developed for the capture phase, none is presented
for the interplanetary phase. In fact the principal unsolved problem is



how to project errors from the interplanetary phase to errors at the start
of the capture phase. Difficulties arise because the two phases are linked
by a transition region in which the solar and planetary attractions are on
the same order. This problem is discussed in Section 5.




SECTION 2

INTERPLANETARY TRANSFER

2.1 THE ENERGY MOMENTUM DIAGRAM

For the transfer phase of the mission, the assumption is made that the
vehicle starts in a circular orbit about the Sun at one astronomical unit
(1AU) and terminates in a circular orbit about the Sun at a radius equal
to that of the target planet. The problem is to steer the vehicle between
the two orbits using constant or zero thrust acceleration. The planetary
attractions are ignored in the following discussion.

In general, solutions which satisfy the boundary conditions are found by
trial and error. However, by mapping the transfer orbit on an energy-
momentum (E-h) diagram, the problem can be split into two initial value
problems, one commencing at the inner orbit and the other commencing at
the outer orbit. 1In this way, the transfer orbit can be found directly
without recourse to trial and error methods.

The idea of using the energy-momentum diagram was suggested by RODRIQUEZ

[1] in 1959. His restrictions were somewhat different than ours. He had

no coast segment but instead required two different acceleration levels to
match end conditions. Our restrictions are more realistic. LEVIN [2] used
the energy-momentum diagram to patch segments of constant circumferential

and radial thrust acceleration linked by a coast phase. MOECKEL [4] attempt-
ed to use the E-h diagram to patch segments of constant tangential thrust
acceleration, but was unable to link the two segments. This difficulty can
be handled by a theorem on image trajectories. FOX [3] in 1959 successfully
used an energy-eccentricity diagram to link segments of constant tangential
thrust acceleration. His solutions provide the minimum characteristic
velocity transfers for fixed thrust acceleration when there is no restriction
on the total time of flight.




A hypothetical transfer trajectory and the corresponding E-h diagram are
shown in Figure 2-1. The departure and target orbits are designated as
points 1 and 2, respectively. The vehicle is powered from 1 to a, it
coasts on a KEPLER ellipse from a to b, and is powered from b to 2. Since
a and b lie on the same ellipse, they are coincident on the E-h diagram.

The procedure for obtaining the transfer orbit for specified thrust direc-
tions and thrust acceleration is as follows: The equations of motion for
powered flight are integrated (either by approximate analytical techniques
or numerical methods) from 1 to some point beyond the expected location

of a. The corresponding trace on the E-h diagram is made. Next, the
equations are integrated backwards from point 2 past the expected location
of b. The corresponding trace is made on the E-h diagram. The intersection
of the lines, corresponding to the two powered segments, on the E-h diagram
locate points a and b on the transfer trajectory. A KEPLER ellipse is
fitted between a and b. The parameters of greatest interest are the total
flight time, the total powered time, and the polar angle @ between 1 and 2.

2.2 THE POWERED THRUST SEGMENTS

The geometry for the powered thrust segments is shown in Figure 2-2., The
vehicle position P is defined in terms of the polar coordinates r and 8.
The vehicle velocity v is expressed in terms of its magnitude v and direc-
tion @ with respect to the outward radial direction. The direction of the
thrust acceleration f is specified either by the angle ¥ relative to the
outward radial direction or the angle B relative to v. There are four
special cases:

v = 0 radial thrust

¥ = 7/2 circumferential thrust
B =0 tangential thrust

B = m/2 normal thrust

It should be noted that ¥ is time variable when B is fixed and vice versa.

When ¥ is the control parameter, the equations of motion are conveniently
espressed as

2
. h km
P -3+ = fcosy (2-1)
r r
r = p (2-2)
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TRANSFER ORBIT

DEPARTURE ORBIT
TARGET ORBIT

ZERO ECCENTRICITY
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ENERGY, E

ANGULAR MOMENTUM, h

FIGURE 2-1. TRANSFER ORBIT GEOMETRY AND E-h DIAGRAM
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(2-3)

h fr siny

o = nwir’ (2-4)

where k is the universal constant of gravitation, m is the mass of the
attracting body (the Sun in this case), and h is the angular momentum

about the attracting body.

On the other hand, when B is the control parameter, the equations are more
conveniently expressed as

v = -k—lgcos¢+fcos,3 (2-5)

T
$ = _k_:g_yz sin¢_fsinﬂ (2-6)
B 2 r r v

t = vcos¢ (2-7)
b = Tsing (2-8)

As described earlier, the vehicle is powered from b to 2. However, in
determining the transfer orbit, b is unknown. Consequently, one must

start with circular orbit conditions at 2 and integrate backwards to find
b. In practice, one calculates the image trajectory 2 to c (where c is

the image point of b), and by reflection obtains the desired trajectory

b to 2. This may be seen by carrying out a coordinate transformation of
the equation sets (2-1, 2, 3, 4) and (2-5, 6, 7, 8) by the method described

by MIELE [16].

Equations (2-1) through (2-4) remain invariant under the transformation

Similarly, Equations (2-5) through (2-8) remain invariant under the trans-
formation



The starred variables (except for 7*) are pictured in Figure 2-~3, The
invariance of the equations of motion suggests that the solution going
from 2 to ¢ may be used to obtain the image trajectory from 2 to b. This
ruse was used to obtain the transfer orbits in this section.

It should be noted that the theorem on image trajectories does not apply

when the thrust acceleration is a variable, Without this aid the two point
boundary value problem cannot be reduced to two initial value problems,
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2.3 SOLUTIONS USING TANGENTIAL THRUST ACCELERATION

EDELBAUM [17] has shown that the absolute minimum characteristic velocity
for a transfer between coplanar circular orbits with radii ratios less

than 12 is defined by an impulsive HOHMANN transfer. Low thrust transfers
require greater characteristic velocities than impulsive transfers, but the
differences are small when the orbit radii ratios are less than 2.

For a HOHMANN transfer, the thrust is applicd tangentially. Therefore, it
is logical to first consider tangential thrust steering programs for low
thrust transfers. The results which follow largely duplicate those obtained

by FOX [3], whose work had been overlooked.

The transfer orbits were generated using the E-h diagram with powered
thrust segments obtained by numerical integration of the set (2-5) through
(2-8) with B = 0. The results are expressed in units normalized on the
inner orbit parameters. Specifically, the radial distance, time, and the
thrust acceleration are expressed in the nondimensional units

r kml fri

p = _— T = D —— t’ Q = —
T 3 km

1 r 1

Transfer orbits were calculated for combinations of thrust acceleration
a= 0.5, 0.2, 0.1, 0.05, and 0.02 and final orbit radii P, = 1.2, 1.228,
1.5, 2, 5, and 10. The important transfer orbit characteristics are listed
in Table 2-1. The energy and momentum of the intermediate KEPLER orbit
are designated by Ep and h,p, respectively. The radial distances at a
and b are tabulated in the next two columns. These four parameters define
the segment of the transfer ellipse. The polar angles 6,, 6, and 6,
define the range angles at a, b, and 2 measured from 1. Likewise T3, T
and Ty give the normalized time in radians of travel at the inner orbit
starting at 1, T, denotes the total powered time interval and a7b denotes
the characteristic velocity.

The characteristic velocity @T, is plotted in Figure 2-4 as a function

of Pz for selected thrust accegeration levels ®&. Also shown is the character-
istic velocity for the HOHMANN transfer given by the equation

2p,
2 1 2
Y J N Ry R = 29
P 1+ P2 \/77- 1+ P,

2

The difference between the low thrust transfer and the impulse transfer
is negligible for P < 2. On this basis, it is concluded that the combina-
tion of two tangential thrust segments linked by a coast segment is optimal

-11-
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if no restriction is placed on total flight time. This observation was

not made by FOX. The flight times for the powered thrust segments and

the total flight time are plotted as function of @ in Figure 2-5. 1In all
cases, the total flight time increases as the thrust acceleration decreases.
Likewise, the total range angle @y, shown in Figure 2-6 increases as the

Q decreases.

2.4 REVIEW OF OPTIMAL SOLUTIONS FOR RESTRICTED FLIGHT TIMES

ZIMMERMAN, MACKAY, and ROSSA [8] presented results of an extensive computer
study for optimal transfer from Earth to Mars using segments of constant
thrust linked by a coast segment. The steering angle and thrust durations
were the control variables for obtaining minimum characteristic velocity
transfers for specified initial thrust to weight ratios. They obtained
results with and without constraints on flight time.

With no constraint on flight time, they show that ¥ should be close to

m/2 (or what is almost equivalent, that B should be close to 0) for both
thrust segments. The results plotted in Figure 2-4 are in close agreement
with this conclusion.

For flight times, shorter than obtained using tangential thrust, ZIMMERMAN,
MACKAY and ROSSA show that 3 should be tilted toward the outward radial
direction during the first thrust segment, and inward during the second
thrust segment to maximize the payload. The powered segments are longer

in duration, but the coast segment is shorter. As a result, the character-
istic velocity requirement increases as the flight time decreases. This
same result was obtained independently by MELBOURNE and SAUER [7].

There is a lower limit on flight time for a given thrust level, occurring
when the coast phase vanishes. This limiting case was solved by FAULDERS
[18] in 1961. FAULDERS' optimal thrust steering program for Py = 1.5

and @ = 0.1667 is shown in Figure 2-7. For this example, the normalized
flight time T is 3.22 and the characteristic velocity @Tp is 0.537. This
compares with T = 5.50 and &%, = 0.177 when no restriction is placed on
the flight time.

The E-h path for FAULDERS' solution is shown in Figure 2-8. It exhibits a
closed loop which intersects at E = -0.382 and h = 1.105. When the powered
segment around the loop is replaced by a KEPLER ellipse with values of E
and h defined by the intersection point on the loop, one finds a slightly
larger T (3.43 compared to 3.22), and a significantly smaller a7, (0.312
compared to 0.537). This is indicative of the large propulsion penalty

one pays for even small reductions in the flight time.

-14-
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MELBOURNE and SAUER [9} studied the transfer problem when Y1 (the steering
angle during the first thrust segment) and Y2 (the steering angle during
the second thrust segment) are held constant. They determined the values
of ¥ and P, which maximize the payload for specified flight time. Com-
paring these results with those obtained earlier [7] for variable ¥,
MELBOURNE and SAUER found only small differences in payload capability.
The obvious conclusion is that simple steering programs using fixed ¥,

and ¥ can provide near optimum results.
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2.5 ANALYTIC SOLUTIONS FOR CONSTANT STEERING ANGLES

Approximate analytic solutions for the powered thrust segments of the
transit phase with ¥ held constant can be obtained by the method described
below. The model geometry is shown in Figure 2-9 where S denotes the Sun,
Pi denotes the planet (i = 1 for Earth and 2 for Mars) and P denotes the
veéhicle. P, moves in a circular orbit with radius r, and angular rate n
about S. Tﬁe position of P may be defined in terms of either the inertial
XY coordinates with origin at S or the rotating xy coordinates with origin
at P,. The method of solution is based on the observation that for typical,
near optimum Earth to Mars or Earth to Venus transfers, x and y remain small
compared to r,.

The transformation between XY and xy coordinates is given by

X = (ri + x) cos nt - y sin nt
(2-10)
Y = (ri + x) sin nt + y cos nt
The time derivatives of X and Y are
X = X cos nt - y sin nt - n(ri + x)sin nt - ny cos nt
. . . (2-11)
Y = x sin nt + y cos nt + n(ri + x)cos nt - ny sin nt
and the kinetic energy per unit mass is
-2 .
T = X° + Y2)
(2-12)

Nl= o=

.2 .2 . . 2
[x +y + 2n(xy - yx) + n2(x + y2) + 2n T, v + nzri(ri + 2x)

Planetary attractions are ignored in the transit phase. The gravitational
attraction of the Sun is derivable from the potential function

V = -km/r (2-13)

where k is the universal constant of gravitation and m is the mass of the
Sun. For x and y small compared to r., V can be approximated by,

. 2
i r,
i

2
1 X 1 2
V = -km r—-—2'+-;§ (x -L) (2-14)
i
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FIGURE 2-9. GEOMETRY USING A ROTATING COORDINATE SYSTEM

-21-



3
Using the relation n2 = km/ri, V becomes

2
V = -1 (r? S r x4 xS - 1L-) (2-15)

The total energy E = T + V and the angular momentum h = XY - YX are given

. . . 2 2
E = % ['2 + y2 + 2n(xy - yx) + n (2y - x2)
(2-16)
. 2
+2nriy+n ri (4x-ri)]
b=t [y *o(r, ¥ 2x)] (2-17)

The equations of motion are obtained using the Lagrangian formulation

d 3L _ oL _ *
ok o o TeosV
(2-18)
d 3L JL _ R
s & e

where L = T - V, f is the thrust acceleration and ?* is the angle between
f and the x axis. For x and small compared to r, (the basic assumption
in the analysis) the angle %" is approximately eqﬁal to ¥. The explicit
forms of the equations of motion are

LX) * ‘f
X - 2ny - 3n2x - fcos¥
- (2-19)
Y + 2nx = f sin¥
These equations are normalized by taking
2
€ = x/r, n=ylr, T = nat, @ = f£/(nr)
In terms of the above parameters, the equations become
*
£" - 2n' - 36 = acos ¥
(2-20)
*
n" + 2¢" = asin V¥
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where primes denote derivatives with respect to 7. In these units, E and

h become
E = %.[g'z snl s 2Em - MEY + 2t - &7 4 omr 4 4E - 1] (2-21)
h =n'+1+2€ (2-22)

The solutions to (2-20) are

£ = §o+3§0(1-c05T)+§ésinT+2'r‘|(')(l-cosT) !

+ 200 sin P* (T - sin T)

n = -6&0 (T - sin 7) +n - ZEC‘) (1 -cosT) - 31)(') T+ 41)(') sinT }(2-23)

* *
+a.[l+ sinY (1 - cos T) -%sin?ll ’T2 -%cos '4/*7']

and their derivatives are

*
£ = 360 sin T + gc') cos T + 37)(') sin T+ 2asin ¥ (1 cos T)

T\l

it

-650 (1 - cos T) - 26! sin T - 3n + 4n} cosT ) (2-24)

* * *
+a(4 sin ¥ sinT-3sin‘¢!T-%cosz]/)
!

If the vehicle starts in a circular orbit at radius r,, the initial values
E-o’ N> gc'), and 'ﬂ(') are zero, and the solutions reducé to

£ = 2a sin?ﬁk (T - sin T)
(2-25)
n = a[4 sin'a]/* (l—cos’r)-—:zisin P TZ——;-cos "I’*T]
£' = 2asin 1//* (1 - cos T) ‘
(2-26)
*
n' = a.(4 sin'q/*sinT-3sin ?I/*T--;-coslll)

Transfer trajectories between circular orbits with r. = 1 and r, = 1.5
were calculated for a= 0.2 (normalized at rl) and ah combinatIons of the
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steering angles Y. = 75, 90, 105, 120, and 135 degrees, and Y, = 45, 60,
75, 90, and 105 degrees. The two thrust segments and the coast segment for
each combination were patched using the E-h diagram.

Characteristic velocity aT, and the total range angle @ are plotted as
functions of the total flight time in Figures 2-10 and 2-11, respectively,
These figures were cross-plotted to obtain Figure 2-12, in which character-
istic velocity contours and the steering angle combinations are shown as
functions of the target planet lead angle 6 and the total flight time.

The lead angle is the central angle between the target plamet P, and the
vehicle P at the start of the transfer phase. GL is related to @ and T

at rendezvous by the equation

6, = 6-n,T (2-28)

where n, is the mean rate of P2.

Figure 2-12 is most instructive. It shows that ¥ . and ¢/2 should be
approximately 90 degrees to minimize characteristic velocity, which agrees
with the results in Paragraph 2.3. The lead angle for this case is 49.5
degrees, Figure 2-12 can be used to estimate the characteristic velocity
penalty to be paid should .0 differ from the nominal value due to either
launch delays or time delays in reaching the planetary escape conditions.
The characteristic velocity penalties may be determined with and without
the flight time held fixed.

Figure 2-12 also shows the characteristic velocity penalty one pays to
achieve shorter flight times. For any given T, there is a unique combina-
tion of ¥ and V¥, which minimizes QTp. Figure 2-12 was used to generate
the plots o6f optimum #& and ¥,, and the corresponding &7,shown in Figure
2-13. As T decreases, il decréases and Y2 increases. This agrees with
the curves given by MELBOURNE and SAUER in Figure 4 of [9] for somewhat
different values of r, and Q.

MELBOURNE and SAUER and other investigators, who use the calculus of varia-

tions to determine optimal steering programs, must rely on extensive computer

programs to solve the two-point boundary value problem. Not only must the
equations be solved numerically, but they must be solved many times over to
converge on a single solution, It is obviously expensive to generate a
family of optimal solutions by this method as one or more parameters are
varied,

The approach presented above is entirely different. No attempt is made to
generate the optimal solutions directly. Rather the problem is "shot-
gunned" with a wide choice of steering combinations. Twenty-five combina-

tions were used to generate the plots in Figure 2-12. Using the E-h diagram,

each attempted solution satisfies the boundary conditions. The method is
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FIGURE 2-10. CHARACTERISTIC VELOCITY AS A FUNCTION OF THE TOTAL
FLIGHT TIME FOR DIFFERENT STEERING ANGLE
COMBINATIONS

-25-



RANGE ANGLE, @ (DEGREES)
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further facilitated by having analytical solutions for the individual
thrust segments. When the results are plotted as in Figure 2-12, one
obtains a mapping of the entire problem within the range of parameters
considered., The Q@ T,contours allow one to determine the optimum steering
combinations and the propulsion penalties one pays for flying nonoptimal

courses. The fact that the nonoptimal solutions are presented thus appears

as an advantage.
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SECTION 3

APPROXIMATE ANALYTIC SOLUTIONS FOR PLANETARY ESCAPE AND CAPTURE

3.1 INTRODUCTION

The analytical methods for describing the escape and capture phases of a
low thrust mission are compared and evaluated in this section. The methods
of analysis may be divided into three groups:

(1) Perturbation solutions in powers ofd:1
such as the works of TSIEN [19] ,
BENNEY [20], LAWDEN [21], and AnTHONY [10].

(2) Perturbation solutions in powers of @& such
as the works of LEVIN [2], and JOHNSON and
sTompr [12].

(3) Asymptotoc solutions_for small aq such as
the works of ZEE [13], and LASS and LORREL [141.

The main question is whether any of these methods can accurately describe
the motion clear to escape using even the simplest of steering programs.

The numerical studies by PERKINS [22] provide a complete picture of low
thrust escape from a circular orbit using constant tangential thrust

acceleration. His solutions will serve as one basis for comparison of the
analytical methods.

The geometry is shown in Figure 2-1. Let a zero subscript denote conditions

in the initial circular orbit about the planet. In terms of the normalized
parameters
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_\/?; r E £
D = ; — = — 7 a-=
VVinm°® & km km

where m is the mass of the attracting planet, the set (2-1) to (2-4)
becomes

2
k 1
" .24+ = = 6 coSs (3-1)
P P3 p2 4
k' =apsiny (3-2)
k
9! = a— (3'3)
Py:

and the set (2-5) to (2-8) becomes

o = - °—°S—2¥’4+ @cos B - (3-4)
P
¢| = L - 0_2 sin ¢ - & sin p (3_5)
p2 P 0 D
P' = D cos ¢ (3-6)
o' =% sin ¢ (3-7)
In addition, the energy and momentum are given by
k = po sin ¢ (3-8)
{5:.1_ p'2+ﬁ _.1_-_1_02-_1. (3-9)
2 p2 p 2 P

A typical low thrust escape spiral for constant tangential thrust accel-
eration with @= 103 is shown in Figure 3-1. The velocity angle ¢ and the
orbit eccentricity e are shown as functions of the local thrust accelera-
tion a.p2 in Figure 3-2 for the same case. These results were obtained by
numerical integration of the set (3-4) to (3-7). By the time the vehicle
reaches an eccentricity of 0.1, it has spiraled nearly 40 times around the
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planet with a normalized time T = 620. In the interval between e = 0.1 and
e = 1 (escape), the vehicle makes less than one revolution about the
planet; but the additional time increment is 237 so that escape occurs at
T = 857.

Supplementing PERKINS' results [22] with our numerical calculations, con-
ditions at escape were obtained as functions of @&. The local thrust accel-
eration @ p“ and the normalized velocity a‘l/[*u are plotted in Figure 3-3,
and the characteristic velocity @7 and velocity angle § are ploited in
Figure 3-4, PERKINS was the first to recognize that ap<, a‘1/4u and ¢ have
the same values at escape for @& < 10-2,

3.2 PERTURBATION SOLUTIONS FOR POWERS OF a.'l

ANTHONY [10] obtained perturbation solutions in powers of al for five
different steering programs:

(1) circumferential thrust

(2) thrust in a fixed direction

(3) tangential thrust

(4) 1linear off-set from tangential thrust

(5) quadratic off-set from tangential thrust

For this method, the equations of motion (3-1) and (3-2) are cast in the
forms

2
d 2
P_2fx° 1 -1
— = == =1+ a " cos (3-10)
ar (P3 Pz) Y
&K= psiny (3-11)

where the characteristic velocity ¥ = @T is the independent variable. The
steering angle ¥ satisfies a side condition corresponding to the particular
steering program. For the above mentioned steering programs, P and k are
even functions of a~l. Consequently, the power series solutions are repre-
sented as even powess of al:

P=1p + a."zp2 + a.'l*p4 (3-12)

_ -2
k = ko + Q kz (3-13)
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subject to the initial conditions

\
p:l’p=p=0
(o]

dp /dY = dp,/d¥ = dp,/d¥ =0 } at ¥ =0

for a circular orbit.

For circumferential thrust, ANTHONY obtains

3 4
- oL (A IS
p=1+0Q (3+12)

R S ST < : SO « N & 1 i (3-15)
3 4-5734:5:676-7-10"6-7-8-10

Escape is defined by the condition that the energy (3-9) vanish. The pre-
dicted characteristic velocity at escape is

QT = 0.414214 + 0.002349 _ 0,000014

E o2 o

(3-16)

This result is compared in Figure 3-5 to the exact numerical solution for
circumferential thrust. The agreement is excellent for a > 0.2.

For tangential thrust, the predicted characteristic velocity is somewhat
smaller:

0.001615 _ 0.000064

2

(3-17)
a G.L'L

a.rE = 0.414214 +

This result was first obtained by BENNY [20] in 1958. It is very close to
the optimum steering, second order solution

aT. = 0.414214 + 2:001481
E )

(3-18)

predicted by LAWDEN [21] in the same year. Equation (3-17) also shows excel-
lent agreement with the true solution for a > 0.2.

Typical values of @& for low thrust escape from a near Earth orbit are in

the range between 102 and 10-4. This would suggest that a perturbation
solution in powers of @ (rather than al) be attempted.
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3.3 PERTURBATION SOLUTIONS FOR POWERS OF a

LEVIN [ 2] in 1959 presented a perturbation solution in powers of @ for the
case of constant circumferential thrust acceleration. This solution was
expanded to terms of second order in o« . JOHNSON and STUMPF [11,12]
extended LEVIN's work to the case when the thrust vector is at any fixed
angle ¥ relative to the radial direction. On examining this method, it is
obvious that time variable functions of ¥ could also be accommodated.
However, neither LEVIN nor JOHNSON and STUMPF established the range of
application of their solutionms.

The method of analysis is sketched below., Starting with the differential
equations (3-1) and (3-2) subject to the initial conditions

p=1, p'=0, k=1 at T=0

one assumes series solutions for p and k in powers of a:

it

p=p, tap + o’ Py, (3-19)

ko= k_+0k + a? x (3-20)

1 2

Substituting these solutions into (3-1) and (3-2), one obtains a power
series in @ which must vanish identically in a. Equating coefficients of
like powers of a to zero, one finds

p; =0 (3-21)

px +p; = 2k, +cosy (3-22)
4 op = K24 2k, + 3p° - 6p K

Prt Py =Xy 2 t 3P T 0Pk (3-23)

k!'= 0 (3-24)

ki = giny (3-25

ky = p; siny (3-26)
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These equations are integrated subject to the initial conditions

]
[

P, =1, P = 1, k
atT =0 (3-27)

it

(o]
e

1}

i
e

pp=0, P =0, &k

Substituting the solutions into (3-19) and (3-20), one gets
P=1+ afcos P (l-cos T) + 2 sin P (T -sin )]
+ (!.2[31n2~¢1(3'7'2 + 3'7'2 cosT+ 5 coszT+ 6 cosT+ 2Tsin T7~11)

1
+ sincos Y (8T + %TcosT- %Tz sin T - —22 sin T- 4 sinTcos T)

+ sinzT- 3TsinT- 4 cosT+ 4] (3-28)
k=1l+@ siny T
2 . . L 2.2
+a sinycosg (T—sin T) + sin"Y(T~ + 2 cos T- 2) (3-29)

These solutions contain periodic and secular terms. Since secular terms
arise in the perturbation method when there are phase shifts in the
periodic terms, it is not possible to determine which of the secular terms
are characteristics of the true motion.

Consider the special case of radial thrust (¥ = 0), which is periodic with
no secular phenomena for @ <1/8. The exact solution is given by COPELAND
(23] with corrections by KARRENBERG [ 24], and AU[25]. The first order
perturbation solution

P=1+a(l + cos T) (3-30)

and the second order perturbation solution

P=1+a(l + cosT) + a2 (sinz’r -3TsinT-4 cosT+ 4) (3-31)

are compared to the exact solution in Figure 3-6 for a < 0 and in

Figure 3-7 for @ > 0. For @ <0, the solutions are plotted to the first
minimum for p; and for @ > 0, the solutions are plotted to the first maxi-
mum for p. Since the true solution is periodic, the motion is completely
defined by these segments.
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The period of the exact solution varies with ¢ ; there is a phase shift.
The first order solution (3-30), which has no secular terms, does not show
the phase shift., On the other hand, the second order solution (3-31)
accounts for the phase shift by adding the secular term -3a27 sin T. This
incorrectly implies that the motion is secular rather than periodic.

With circumferential thrust (¥ = 7T/2) the trajectory is an ever increasing
spiral; there is secular phenomena. Both the first and second order solu-
tions for Y= 7T/2 have secular terms. However, one does not know, a priori,
if the secular terms are due in part to phase shifts. The perturbation
solutions are compared in Figure 3-8 to numerical solutions for different
thrust levels. The escape times are also indicated. The second order
solutions show good agreement to escape for @ >0.2 and poor agreement for
smaller a.

Escape, as predicted by the second order solution, is defined by

2 l 1 2 l 1
- . = - = = -
a |2 (1 cos TE) 5 ’TE + a'rE > 0 (3-32)

Solving for the @ root with the minus sign, one gets

T - A /1 -
. 2 1 cos ‘E

a - (3-33)
Té - 4 (1 - cos T)

This equation was used to generate the curve for ®7g shown in Figure 3-9.
The range of application is almost identical to ANTHONY's fourth order
solution in powers of al (see Figure 3-5). This is a disappointing result
since a solution valid to escape for a €< 10-2 was sought.

JOHNSON and STUMPF have suggested that the solution be extended to escape
by successively reinitializing the problem. The procedure is impractical
if the reference solution must be updated many times before reaching
escape. In the limit as the number of times to update increases, the
procedure degenerates to "high class" numerical integration.

The first and second order perturbation solutions are compared in

Figure 3-10 to the true solutions fora= 10~2 and 10-3 using circumferential
thrust. Local acceleration ap? is plotted as a function of T. Escape
occurs near T= 75 for &= 10-2 and near T = 860 for & = 103 Both the
first order and second order solutions depart from the true solutions at
very small values of 7 . The second order solutions exhibit oscillations

of increasing amplitude with the first order solution as an approximate
lower bound. Using either the first or second order solutioms, the
reference orbit would have to be updated many times before reaching escape.
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Further comparisons were made. The case of Y = - M/2 which corresponds to
negative circumferential thrust is shown in Figure 3-11. The true solution
exhibits an oscillatory decay. The perturbation solutions, first and
second order, follow the true solutions to the first local minimums but
then depart. The second order solution is more accurate than the first
order solution, but it does not extend the range of application.

Comparisons for ¥ = m/4 are shown in Figure 3-12. The results are similar
to those shown in Figure 3-8.

Finally JOHNSON and STUMPF in [11] show how their solution could be
extended to handle the case of constant thrust for first order changes
in mass. In this case,o is a function of T:

%

a = T ot (3-34)

where @, is the initial thrust acceleration and c is a constant which is
proportional to the mass flow rate. For small mass changes, c is on the
order of a,. Thus the effect of mass change is second order. The change
in p due to ¢ is given by

Ap = ca (T2 + 2 cosT - 2) (3-35)

The second order perturbation solutions for circumferential thrust with
different c and a, are shown in Figure 3-13. The agreement is about the
same as for ¢ = 0.
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3.4 ASYMPTOTIC METHOD

ZEE [13], and LASS and LORREL [14] used the asymptotic method of KRYLOFF
and BOGOLIUBOFF [26] to obtain low thrust trajectories for tangential and
circumferential thrust, respectively. The method and its range of appli-
cation are reviewed below.

To apply the asymptotic method, the set (3-1) to (3-3) must be reformulated
with @ as the independent variable and u = p"1 as a dependent variable.
With w = k2 one obtains

2
du _ 1 a 1l du _.
> +u = o 5 (cos Y+ T sin g[/) (3-36)
d6 wu
dw _ 20 .
T = =5 sin Y (3-37)
u
j_g = _ZL__ (3-38)
u vV w
For ¥ = /2, (3-36) and (3-37) reduce to
d2u 1 o du
— 4+ u = = - === (3-39)
d92 w wu2 a6
dw 20
a8 T3 (3-40)
u
and for tangential thrust, they reduce to
2
d__l; +u = X (3-41)
46 A
dw
= - (3-42)
When o = 0, the solutions to (3-36) and (3-37) are
1
u = T+ Acos 6 -X (3-43)
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where w, A, and X are constants. The quantity Aw corresponds to the orbit
eccentricity e.

ZEE [13] determined the changes in w, A, and X for constant tangential
thrust acceleration. In carrying out his solution he dropped terms of
order e2, assuming e remains small. With this assumption, the differential
equations for w, A, and X can be written as

Aes 2
;—" = 2o w (1- 3Aw cos 7Y) (3-44)
? dA
6 = 2aw (1 - 3Aw cos 7Y) cos?Y (3-45)
aX _ W .
30 - ZG.A (1 - 3Aw cos 7Y) sin 7Y (3-46)
where Y = @ - X. For small a, the derivatives are replaced by their average
values
2R
dwN . 1 dw _ 3
<d9> = o f ag 4 = 2w (3-47)
[e]
n
A o L daA = -3a AZ W@ -
GJ = on 36 a7 3 A" w (3-48)
d 1 dX
a2y - 4. A = 3-49
E& - L Zav - o (3-49)

where A, w, and X are treated as constants under the integrals.

With initial conditions corresponding to a circular orbit, ZEE obtains

% =  &/1 - 446 (1 + e sin 6) (3-50)

where the eccentricity e is given by

e = 2a (1 - sa9)/? (3-51)
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For o <_10'2, the solution for Q can be approximated by

p = —— (3-52)

v 1 - 4ab

which defines a spiral with ever increasing amplitude. Integrating (3-38)
using (3-52) one obtains

T - f d® - - é[l - Q- 4a.9)1/4] (3-53)
5

(1 - 4a9)3/
(o}
which together with (3-52) provides

p = —— (3-54)

(1 - orr)2

Equation (3-54) was used to obtain the plots of local thrust acceleration
apz shown in Figure 3-14. The asymptotic solutions are accurate to

ap2 = 0.1 and 0.05 for a = 1072 and 10'3, respectively. As ap2 increases
beyond these values, the eccentricity rapidly increases (see Figure 3-2).
These results are immeasurably better than those obtained using the per-
turbation method (see Figure 3-10). However, they are not applicable to
escape.

Recall that ZEE assumed e remains small. LASS and LORREL [14] considered

the case of circumferential thrust without making any assumptions on e,
Their analysis shows that the average change in e is given by

<%3= _ 3a w22e3/2 (3-55)

2 (1 - e7)

This result indicates that e decreases with increasing 8 for positive q,
and gives no hint of the actual phenomena. Hence their solution is no
more accurate than ZEE's at least for positive q.
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SECTION 4

GUIDANCE LAWS FOR THE ESCAPE AND CAPTURE PHASES

4.1 ESCAPE PHASE

The principal error source during the escape phase is the uncertainty in
the thrust acceleration level. Several revolutions may pass before the
thrust level can be determined to the desired accuracy. A small error Aa
in &, if allowed to persist, will lead to errors in position, velocity,
and time at escape. These errors can be estimated by the equations:

br- 480
_A_‘_)E -2 88 (4-2)
AT:’,’ =0 (4-4)
2. .48 (4-5)

The first four relations were derived from conditions set down by PERKINS
[22], and the last relation was derived from (3-53).

The nominal escape conditions for @ = 1073 are T = 857, P = 27.8, © = 0,268,
® = 50.8 degrees and 6 = 40 revolutions. The changes in these parameters for
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a one percent change in & are all small, and with the exception of A® are
unimportant. Though A@is only 0.4 revolutions, it represents a large dir-
ectional error in the departure asymptote. This is illustrated in Figure 4-1
where the nominal path departs along an asymptote defined by @ and the off-
nominal path departs along an asymptote 144 or 216 degrees removed from the

nominal, depending on the viewpoint.

It is evident that if oné¢ waits until the last revolution to correct &
large errors in P, ©, and 7 at escape will result. BATTIN and MILLER [15]
suggest that the thrust acceleration be varied shortly before the last
revolution to correct ®. This scheme, while theoretically correct, suffers

in that very small corrective thrusts must be measured and monitored.

The recommended scheme is to simply turn the thrust off for a short inter-
val before the last revolution. It is importamt that the eccentricity be
small otherwise additional errors in P, ¥, and @ result. The coast time
interval AT is related to the desired angular correction ABby the equation

AT=p2 po (4-6)

where P is the mean radius of the coast orbit. For the case shown in
Figure 4-1, Pis 5.58 at the end of the 38th revolution. If the correction
AB= 216 degrees (or 3.79 radians) were made at this time, AT would be
41.5. The nominal escape time T is 857. Thus AT represents a 5 percent
time error, which converts to an error in the target planet lead angle OL
at the start of the interplanetary phase.

4.2 CAPTURE PHASE

Under nominal conditions, the capture trajectory is simply the reverse of
an escape trajectory which commences at the desired circular orbit about
the target planet and which uses tangential thrust. The escape parameters
Py, g, ¢E are given in Figures 3-3 and 3-4 for different &. The nomi-

nal capture trajectory commences at

P, = P%, Dc = DE’ ¢c = ¢E + (4-7)
o o o]

and uses negative tangential thrust, that is, ﬁ = N,
Capture is defined by the condition

(4-8)

2
v - =0

N =

L
P

4
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Errors develop when the actual capture parameters P., 9., and ¢b are dif-
ferent than the nominal capture values Pc,> V¢, and @.... Such differences
are the residual errors of the interplanetary transfer phase. Since 0. is
related to P, by (4-8), only P, and ‘c need to be specified.

Tangential thrust in the negative direction is only acceptable when start-
ing at the nominal capture values. For off-nominal capture values, tan-
gential thrust does not circularize the capture trajectory. Unlike the es-
cape problem, the capture problem cannot be disposed by simply turning the
thrust off and on, or by varying the thrust magnitude over a small range.
Rather the thrust direction itself must be controlled to achieve the
desired terminal conditions.

BATTIN and MILLER [15] have formulated one solution to the capture problem.
The following features characterize their method:

1. The scheme employs variable thrust acceleration
with an upper limit. More often than not they
ride this upper limit. It is not obvious whether
their scheme would work if the thrust acceleration
were fixed.

2. The scheme does not depend on either continuous or
intermittent solution of the two body orbit. 1In
other words, it is not an explicit guidance
mechanization.

3. The scheme uses stored values of the thrust acceler-
ation vector and the velocity vector as functions
of the radial distance along a pseudo-reference
orbit. This data together with instantaneous vel-
ocity and position data are used to determine the
steering direction.

4, The scheme steers along the pseudo-reference orbit
only in the absence of errors. The capture tra-
jectory is not optimal when there are errors, but
the characteristic velocity penalties may be small.

4.3 A NEW TERMINAL GUIDANCE SCHEME -

The objective was to formulate a guidance law for the capture phase which
does not depend on the explicit solution to the equations of motion or
comparison to any reference trajectory. The scheme would simultaneously
reduce the semi-major axis a and the eccentricity e of the instantaneous
KEPLER ellipse. Now a and e are related to the normalized energy & and k dy

1 -\/—'___2
a=-5g, es= 1+ 26k
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The capture phase commences at & = 0 and is completed at & = -1/2. If the
orbit is to be circular at & = -1/2, k2 must be unity. With negative tangen-
tial thrust, both the energy and momentum decrease, even when the latter

is less than 1.

The deficiency of negative tangential steering can be eliminated by pro-
viding a component of normal acceleration which increases the angular
momentum. This is accomplished by the steering law

B=1r+1<(7—2[-¢) (4~9)

with the constraint

(18|

<ps>y (4-10)

K is the control gain, a constant in this case. When K = 0 the thrust is in
the negative tangential direction. The correction angle K (/2 - ¢) intro-
duces a normal component of thrust which increases the angular momentum
whenever the velocity vector is inclined to the circumferential direction.
The constraint (4-10) is imposed so that the thrust will never cause the
energy to increase.

The steering law (4-9) was evaluated for several combinations of K and
capture parameters P, and ¢.. Two typical runs with K =1 and K = 5 are

shown in Figure 4-2 for @ = 10-3 (normalized on the desired circular orbit

P = 1). The assumed capture conditions are pc = 40 and @. = 147 degrees
compared to the nominal values pc_ = 27.8 and ¢, = 129.2 degrees. With

K = 1, p converges to 1 in an oscillatory fashion. The oscillation is a
measure of the orbit eccentricity. When & reaches -1/2 at 7 = 990, the eccen-
tricity is 0.43, which is too large. With a large gain, K = 5, the oscilla-
tion in p disappears, but now & reaches -1/2 at 7 = 1200. Thus there is a
trade-off between the final orbit eccentricity and the characteristic

velocity required to reach & = -1/2.

Further examination of Figure 4-2 reveals that the large gain is probably
too large at the beginning (the hump in p), and the small gain is too
small toward the end (the oscillation in p). We concluded that the guid-
ance scheme could be improved by employing a variable gain K, one which
increases as & decreases.

Three variable steering gains

K=k, |16]- ‘%)1/2 (4-11)
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|

=k, (|&}- & (4-12)

k=K, (|&] - &7 (4-13)

were tested for ranges of the gain coefficients K1 2 K1, and Kp. & is posi-
tive before capture, zero at capture and negative thereafter. The argument
&| - & is therefore zero before capture and approaches 1 as & approaches
-1/2. Different values of the gains Kj/», Ky, and K; are evaluated in
Figures 4~3, 4-4, and 4-5, respectively for the same @ and capture condi-
tions as used for the runs in Figure 4-~2. The best results for this parti-
cular set of conditions were obtained with Ky = 30. The terminal condition
& =-1/2 was reached at T = 955 compared to T = 1200 for a constant gain K of
5, Furthermore, the orbit eccentricity at this point is essentially zero
(e = 4 x 10'4). In subsequent studies, only the linear steering gain K1
was considered.

For nominal capture conditions, the minimum characteristic velocity T
is 0.857 for @ = 10~3. The minimum value is achieved by steering to

B = . The minimum & T for off-nominal capture conditions has never been
determined. The proposed steering law

B=mrx (I6l-86 G -9 (4-14)

IR |

<B<S (4-10)

is not optimal even for the nominal capture conditions. This contrasts
with BATTIN and MILLER's terminal guidance scheme which is optimum in the
absence of errors. The efficiency of the proposed steering law may be
assessed from Figures 4-~6 and 4-7. In the first figure, @T is plotted as

a function of ¢, for the nominal P._ and in the second figure aTis plot-
ted as a function of P, for the nominal ¢Co' Two gain coefficients K; = 10
and 30 are used. The smaller gain is more efficient for small errors and
less efficient for large errors. In the absence of errors &T is 0.932 for
Ky = 30 and 0.874 for K; = 10, which represent inefficiencies of 9 and 2
percent respectively when compared to the optimum value. Thus if one knew
the errors were going to be small, a small Kj could be used, and vice versa.

Figure 4-8 is a plot of the characteristic velocity contours as functions
of Pc and ¢, for @ = 1073 and K; = 30. The contours are symmetric about

$c = 180 degrees, the straight-in approach, indicating that @ T is indepen-
dent of the direction of rotation about the plant. In all the cases shown,
the final orbit eccentricity is less than 0.02. The proposed terminal
guidance scheme can accommodate large errors in P. and @.. However, for Pc
as large as 60, cases were found which did not converge. In these cases,
the velocity was reduced to zero at a point where sz was larger than one,
indicating that the thrust acceleration was larger than the planet gravity.
As a result, the thrust vector pinwheels around and opposes any velocity
increment.
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SECTION 5

PLANET-SUN TRANSITION REGIONS

In this study, as in most others, the attraction of the Sun was ignored
during the escape and capture phases; and the planetary attractions were
ignored during the interplanetary phase. The divison of the problem into
three phases is not as clean as one might wish since there are transition
regions where the planetary and solar attractions are of the same order.
The problem of projecting errors through a transition region using a
specified steering law is, in our estimation, the most important unsolved
guidance problem for low thrust interplanetary transfer.

For example, the interplanetary phase described in Section 2 terminates

when the vehicle arrives at a massless target planet with zero relative
velocity. Call this condition A, The capture phase commences when the
vehicle achieves zero energy relative to the planet with the planet mass
included. Call this condition B. It is not obvious that condition B is
ever satisfied by steering to meet condition A. It may be that the terminal
guidance scheme, described in Paragraph 4.3, should be initiated before con-
dition A or B is met. Then, too, there is the possibility that capture will
be achieved too far from the planet; in which case, the vehicle stops at
some point where the thrust acceleration exceeds the planet attraction.

The rotating xy coordinate frame used in Paragraph 2.5 is ideally suited
for describing the motion in a transition region. Adding the attraction
of the planet Pi to (2-19), one obtains

km, x
S = f cos Y* (5-1)

. 2
- 2ny - 3n x +
(I 2 2|)3/2
x +y
kmi y

. _ . *
+ 2 nx + ; ; 372 f siny
'x +vy l
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where mi is the mass of Pi' The function

2 2 kmi

(l 9 9 )1/2
x° + y°|

is a constant when f is zero, in which case (5-2) defines the JACOBIAN energy
integral.

(5-2)

The transition from the interplanetary phase to the capture phase was
evaluated for one case using (5-1). The thrust acceleration a = fr2 was
0.225 where ry is the radial distance from the Sun to Pj. The trajeétory
is shown in Figure 5-1. The initial conditions were such that the vehicle
would arrive at Py with zero velocity if mj were zero and ¥* were m/2.

The trajectory shape is almost identical when the planet mass is included,
but the time to reach the planet is shorter. The terminal guidance scheme,
with K = 30 and & replaced by H as defined in (5-2), was initiated at

)= 0.012., Using the terminal guidance scheme, the thrust is in the nega-
tive tangential direction prior to capture. This, together with the solar
perturbation term 3n2x, explains why the trajectory bends to the left.
Capture occurs inside the circle of equal thrust and gravity accelerationm.
Consequently, the terminal guidance scheme is capable of circularizing the
orbit as shown in Figure 5-2. The dashed lines shown in Figure 5-1 are the
locus of pointf where the solar force 3n2x is equal to the planet force

kmy (x2 + y2)7°.

The successful maneuver shown in Figures 5-1 and 5-2 was more or less
accidental. Had the terminal guidance scheme been initiated much earlier
or later, convergence to the desired terminal conditions may not have been
achieved. A rational basis for switching from one guidance mode to another
is a minimum requirement. Better yet, a steering law should be formulated
which achieves a smooth transition from one phase to another.
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NOTATION

e/w

semi-major axis

constant proportional to the mass flow rate
total energy, T + V

normalized total energy

orbit eccentricity

thrust acceleration

JACOBIAN energy integral

angular momentum

normalized angular momentum

universal constant of gravitation

T-V

mass

mass of the ith planet

mean orbit rate

time derivative of r

radial distance

radial distance from the Sun to the ith planet
kinetic energy

time

reciprocal of r

potential energy

speed

angular momentum squared

nonrotating coordinate system with origin at the Sun
rotating coordinate system with origin at the planet
normalized thrust acceleration

angle between the thrust and velocity vectors
g - X

y/r
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NOTATION (Continued)

polar coordinate

target planet lead angle

x/ri

normalized time

escape time

total powered time in the interplanetary phase
normalized velocity

direction of the escape asymptote

angle between the velocity vector and the radial direction
phase angle

angle between the thrust vector and the radial direction

fixed values of for the two thrust segments in the
interplanetary phase

angle between the thrust vector and the x axis
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